If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-14x-17=0
a = 7; b = -14; c = -17;
Δ = b2-4ac
Δ = -142-4·7·(-17)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{42}}{2*7}=\frac{14-4\sqrt{42}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{42}}{2*7}=\frac{14+4\sqrt{42}}{14} $
| 0=3w^2+4w-108 | | 0.6(x+30)+x=82 | | 27x-2x-10=0 | | 3h-2(4h-5=10-5h | | 3x−1/5=x+1/3 | | 3.8/(4c+3)=2/22/19 | | 3.8/(4c+3)=2/22/19 | | 1/3(y+3)=2y | | y/4=2.25 | | 10x-3=107 | | 24=8x+6 | | 9/10c=9/5 | | Y=1|2x-2 | | 4|3y-5|-5=7 | | 6(3n+4)=8(4n+4)+6 | | 3^3x-2=81 | | x/6-1/2=x/5 | | x=-41+2x | | (D^4+18D^2+18)y=0 | | 4X/3-4=1/2+3x | | 7y=32-y | | 2(5x-4)=-2x+2 | | 4(x-2)^2=0 | | 4(x-2)^2=25 | | 0.08(y-8)+0.04y=0.02y-1 | | 2(5x-4)=900x+1800 | | 2(5x-4)=9x+34 | | t=25/31.25 | | 2(5x-4)=777x+92 | | 2(5x-4)=89x+33 | | 2(5x-4)=87x+76 | | 5g-10=2g+4 |